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Abstract. The possibility of formation for a bound state of a t quark and a lighter one is investigated using
potential model predictions and heavy quark effective theory approach. Resulting estimates for the 1S–2S
splitting of the energy levels are compared to the total top decay width Γt. As for the case of toponium,
our conclusions show that the probability of formation for T–mesons is negligibly small due to the high
top mass value.

1 Introduction

It is conventional wisdom [1] that the top quark has no
probability of meson formation of any kind because the
t quark decays in a way that is too fast to allow for a
single orbit of the bound state. First calculations based
on a relatively light top quark [2] have shown that the
observability of tt bound states would be possible for a
narrow window on mt values. Subsequent estimates [3,4]
have demonstrated that there is only a small probability
for creation of a tt bound state for higher top masses. From
these results it could be inferred that even the formation
possibility for a meson made out of a single t quark and a
lighter one is small. In this note we discuss quantitatively
the last point in light of the present high values for top
mass [5,6]. For this purpose we shall make use of calcula-
tions from potential models in QCD in both nonrelativis-
tic and relativistic theories. The choice of the potentials is
driven by considerations on the proper QCD scale for this
problem. We will also give some results taken from heavy
quark effective theory, based on an estimate for the iner-
tia parameter Λ. The latter method is particularly suitable
for mesons containing a very light quark.

These results will be compared to the decay probability
of the top quark, whose value is determined bymt, in order
to give quantitative answers on the possibility of creation
for such “superheavy” mesons.

The paper is organized as follows: we review the to-
ponium case in Sect. 2. The potential model approach
for the T–mesons, both nonrelativistic and relativistic, is
presented in Sect. 3. The heavy quark effective theory dis-
cussion for these mesons is in Sect. 4. Section 5 is devoted
to the discussion and conclusions.

2 Toponium bound states revisited

The recent discovery of the top quark by CDF [5] and DØ
collaboration [6], and subsequent measurements [7] and
[8] have given large values for the top mass:

mt = 175.6 ± 9.3 GeV (CDF) ; mt = 169 ± 11 GeV (DØ)
(1)

Previous top mass values of around 130 GeV already ex-
cluded the possibility of formation of toponium bound
states [3,4].

This fact can be understood by comparing the time
period of the would–be bound state with the decay prob-
ability of the top quark. For t mass above the Wb thresh-
old, the top decays into a real W and a b quark [9,10]. The
single quark decay width of the top quark, with one–loop
QCD correction and neglecting terms of order (mb/mt)2,
is given by [11]:
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The width values increase from 438 MeV (for mt = 120
GeV) to 1.02 GeV (mt = 160 GeV), and 2.22 GeV for
mt = 200 GeV. With such a large width, the lifetime of
T–mesons and toponium are dominated by single quark
decays.

For a bound state, the typical formation time of a
hadron is characterized by a revolution time driven by
strong interactions. Thus, no bound states exist, if the
revolution time, tR = 2πr/v, is larger than the lifetime of
the rotating quarks, τtt = 1/Γtt [9].

The value for the width of the toponium system is
two times the width of the single top quark, since each
one could decay in an independent manner: Γtt = 2Γt. To
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Fig. 1. Bohr radius versus quark mass

discuss the bound state, let us begin with the toponium
case through a Coulombic two–body potential:

V (r) = −4
3
αs

r
(3)

for which analytic solutions exist. Here should also be con-
sidered corrections from Higgs boson exchange Yukawa
type forces [12,13]. For a top quark with mass less than
≈ 200 GeV these corrections are small, with an attractive
potential for the quark–antiquark singlet state, and they
amount to no more than 10% of the Coulomb term.

We shall use the two–loop expression for αs [14],

αs(Q2) =
4π
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with β0 = 11 − 2
3 nf , β1 = 51 − 19

3 nf evaluated at a fixed
scale Q2 = 1/r2B [4], where rB is the Bohr radius

rB =
3

4µαs
(5)

In Fig. 1 we show the behavior of the Bohr radius as a
function of the quark mass for a quarkonia bound state
under the effect of a Coulombic interaction. The energy is
given by

En = −8
9
µα2

s

n2 (6)

where µ is the reduced mass.
To estimate tR, we shall make use of the virial theo-

rem, which, for the Coulombic potential states that 〈T 〉 =
− 1

2 〈V 〉 (T and V are respectively the kinetic and poten-
tial energies). From the energy expression (6), we have

〈v2〉 = 8/9α2
s, which leads to tR =

√
2π 9/(4α2

smt). As
Γtt ≈ 2cm3

t (c is a constant), this existence criterion
allows for toponium formation if τtt > tR, namely for

mt <
√√

2/(9π) αs/
√
c.

Another slightly different criterion [4] states that the
formation of a hadron can occur only if the level splitting
between the lowest lying levels of the bound state, which
depends upon the strength of the strong force between
the quarks and their relative distance [1], is larger than
the natural width of the state. In this case, we should
have a bound state if ∆E2S−1S ≥ Γtt. From (6) we read
the splitting of the levels, ∆E2S−1S = 4/3mtα

2
s. In this

case, the estimate for toponium existence is for values of
top quark mass such that mt < 1/

√
6 αs/

√
c.

A comparison with the previous method shows that

the mass bound is larger for a factor
√

3π/(2
√

2), that is
approximately two times larger, and we conclude that the
energy level splitting criterion is less stringent than the
comparison of the revolution time. We decide therefore to
employ the looser condition: if the formation is prohibited
by the ∆E2S−1S criterion, then it is certainly prohibited
also from the other method.

In Fig. 2, we show a comparison of the energy splitting
and the toponium width Γtt, as a function of the top mass.
We shall use the value of ΛMS for which αs(MZ) = 0.118
[15], and we use for αs the scale (5). From this figure, it
is possible to see that for most recent top masses and the
average value for the top mass, mt = 172.9 ± 7.0 GeV,
toponium bound state formation is rather unlikely.

3 T–mesons from potential models

For the T–mesons, the less stringent criterion of level split-
tings will be used. Notice that from [4] the comparison of
the Coulombic potential results with some other models
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Fig. 2. Toponium width compared to energy
separation of the Coulombic model. The stripe
represents the indetermination of ∆E due to
the value of αs. The vertical bars show the
indetermination of the top mass

gave substantially similar results, thus confirming the va-
lidity of this approach.

The problem for the T–meson, unlike toponium, is dif-
ficult due to the identification of the proper QCD scale for
this problem in the Coulombic potential. The interquark
force cannot clearly be set simply at the top mass scale,
but it has to include both the information of the top and
the light quark mass scale. In order to achieve it, we use
for the scale the inverse of the Bohr radius (5) calculated
in terms of the reduced mass of the T–meson, which in
turn, because of the heavy top, is approximately the light
quark mass. In addition, we should also include calcula-
tions using other potentials, such as Martin’s [16]

V (R) = −8.064 + 6.8678 r0.1 (7)

(the units are in GeV ), and the model of Grant, Rosner
and Rynes [17]:

V (r) =
λ

α
(rα − 1) + c (8)

These have the property of being independent of QCD
coupling αs, an important consideration since the energy
scale considered is low, of the order of few fractions of
GeV. For quark masses we use the constituent one, whose
approximate values are mb = 5.0, mc = 1.5, ms = 0.5,
mu = md = 0.3 (in GeV). In Table 1, we present a table
of energy splitting values, for the bound states from the
potential models. For sake of comparison we also include
the prediction of the Coulombic model and αs values. As
for toponium, we shall use ΛMS such that αs(MZ) =
0.118 GeV [15], and the scale from (5).

We see that ∆E increases with the mass of the light
quark, except for the Coulombic case, whose high αs val-
ues for light quarks make perturbative calculations unre-
liable.

In the following, we investigate the bound state system
by means of a model that includes relativistic corrections.

Table 1. Values of ∆E from different potential models (PM).
We show ∆E as a function of the light quark mass for the
potentials given in formulæ (7), (8) and (3)
Energy splitting values ∆E for potential models (GeV)

quark Martin Rosner Coulomb αs

b 0.56 0.65 0.29 0.30
c 0.60 0.61 0.20 0.45
s 0.31 0.41 0.20 0.78
u, d 0.08 0.02 0.24 1.09

The t quark inside the tq system moves nonrelativisti-
cally (v2/c2 ∼ 0.01 for mt ≈ 173 GeV). In order to show
whether the lighter quarks need a relativistic treatment
we employ the Salpeter equation:[√

−∇2 +m2
t +

√
−∇2 +m2

q + V (r)
]
ψ = Eψ (9)

with potentials from the nonrelativistic models. Instead
of dealing with the mathematical difficulties of finding
the eigenvalues of (9) because of the square root opera-
tor, we shall apply the Rayleigh–Ritz variational method
with suitable trial functions. This procedure has already
been successfully applied for the B and D meson decay
constants [18]. By means of a Fourier transform on (9),
we have[√

p2 +m2
t +

√
p2 +m2

q + V (r)
]
ψ = Eψ (10)

Writing explicitly the dependence of ψ upon an ex-
tremum parameter ξ, we find that the energy of the state
is given by minimizing the expectation value of H in (9)

〈H〉 = 〈ψ(ξ)|H|ψ(ξ)〉 = E(ξ) ;
dE(ξ)
dξ

= 0 for ξ = ξ

(11)
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Table 2. Comparison of ∆E results from potential models (PM)
and relativistic potential models (RPM) for potentials (7) and (8).
“Coulomb” and “Gauss” labels indicate the two different trial wave-
functions

∆E for potential and relativistic models (GeV)

PM RPM, Coulomb RPM, Gauss
quark Martin Rosner Martin Rosner Martin Rosner
b 0.56 0.65 0.47 0.57 0.53 0.61
c 0.60 0.61 0.45 0.39 0.55 0.35
s 0.31 0.41 0.41 0.09 0.44 0.00
u, d 0.08 0.02 0.38 0.01 0.34 0.00

The energy levels depend on the number of nodes of the
trial function: no nodes for the ground state, and one node
for the first excited level. We have performed the calcula-
tion for two kinds of trial wavefunctions: hydrogen–type
wavefunction, coming from a Coulombic potential, and
Gaussian wavefunction, from the harmonic oscillator, thus
mimicking the short and the long range behavior of the
interquark force respectively.

For the 1S hydrogen–like function, we choose

ψ(r) =
1√
4π

2
a3/2 e

−r/a (12)

and its Fourier transform, which reads:

ψ̂(p) =
2
√

2
π

a3/2

(1 + a2p2)2
(13)

a being the variational parameter. The 2S function is:

ψ(r) =
1√
8π

a−3/2
(
1 − r

2a

)
e−r/2a (14)

and

ψ̂(p) =
16
π
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(1 + a2p2)2
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respectively. For the Gaussian wavefunction, the 1S is:

ψ(r) =
(
µ√
π

)3/2
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and
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1
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The 2S function is given by:
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where µ is a different minimization parameter from the
previous one. La

n(x) is the generalized Laguerre polyno-
mial, obeying the differential equation xy′′+(a+1−x)y′+
ny = 0 and the orthogonality relation

∫ ∞
0 La

m(x)La
n(x)xa

e−xdx = 0 for m 6= n (for a = 0, we retrieve the usual
Laguerre polynomials).

Technically, one splits H = T + V and then computes
the average

E(ξ) = 〈ψ̂(p)|T (p)|ψ̂(p〉 + 〈ψ(r)|V (r)|ψ(r)〉
= 4π

∫ ∞

0
dp p2 ψ̂(p)

[√
p2 +m2

t +
√
p2 +m2

q

]
ψ̂(p)

+4π
∫ ∞

0
dr r2 ψ(r)V (r)ψ(r) (20)

In Table 2, we present a comparative table with results
from both the potential models and two kinds of wave-
functions.

As we should expect, major differences between the
nonrelativistic and relativistic potential models arise for
the lighter (and hence faster) quarks. Also, the Martin
potential is less sensitive to mass changes. We also notice
that there are no significant differences between different
kinds of trial wavefunctions; confirming thus the reliability
of this approach.

4 Heavy quark theory approach

For performing these calculations, we shall now use a dif-
ferent method borrowed from heavy quark effective the-
ory (HQET). This has the advantage of giving results at
a scale (u and d quarks) for which some potential models
predictions may not be reliable enough. The Coulombic
model is one of these, because αs is of order 1 in this case.

In this model, a meson (hadron) containing a single
heavy quark (mQ � ΛMS) is considered. The heavy
quark’s momentum can be written as

pQ = mQ · v + k (21)

k is the “residual” momentum, which measures the degree
to which the quark is off–shell [19]; v is the velocity satis-
fying v2 = 1. The quark Q exchanges only small momenta
with the rest of the hadron, so it is essentially on shell,
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Fig. 3. Energy splittings from non relativistic
and relativistic potential models for different
light quark masses, are compared with the
T–meson width (full and dashed horizontal
lines)

p2
Q = m2

Q. Q behaves like a static electric and chromo-
magnetic field source. The properties of the light degrees
of freedom do not depend upon the flavor and mass of the
heavy field. Since the top quark is very heavy, it plays the
role of the heavy quark and we could apply HQET to give
some information on the energy of the bound state.

The mass M of the meson is here expressed as [20]

M = mQ + Λ+O

(
1
mQ

)
(22)

where Λ is a positive contribution to M . The “inertia”
parameter Λ has no dependence on the heavy degrees of
freedom:

Λ = Λq ≡ lim
mQ→∞ (M −mQ) (23)

On the other hand, from the potential models (PM) it
is possible to write, for the meson mass,

M = mQ +mq − Eb (24)

where mq is the mass of the light quark, Eb(> 0) is the
binding energy [4]. Comparing (22) and (24), we arrive at
the identification

Λq = mq − Eb (25)

neglecting terms of order O(1/m2
Q), an operation valid

for mt ≈ 173 GeV. We find therefore that the quantity Λq

gives substantially the energy of the light degrees of free-
dom1. In order to compute ∆E, we need some estimates
for Λq.

A rigorous lower bound on the value of Λq has been
derived [22], and leads to the values (in GeV)

Λq(Qu) ≥ 0.057 , Λq(Qd) ≥ 0.076 , Λq(Qs) ≥ 0.343 (26)

for a meson formed by a heavy quark Q and an u, d and
s quark respectively. This lower bound has been obtained

1 A similar equivalence has been obtained in [21]

using the Euclidean path integral formulation of QCD.
The Cauchy–Schwarz inequality has been used to derive
inequalities among Euclidean correlation functions, ob-
taining m(QΓq) −mq ≥ 1/2m′(qiγ5q). The first term of
the LHS is the heavy meson mass, while the RHS is the
mass of the meson created by the light degrees of freedom,
neglecting annihilation diagrams.

Equation (22) gives us the binding energy of the lowest
state, while we need the difference in energy. From the
above

mq − Eb = Λq ≥ γq (27)

where γq is the lower bound on Λq. Moreover, we have
Eb ≥ ∆E2S−1S , and we obtain from the lower bound on
Λq, an upper bound for the quantity ∆E2S−1S :

∆E2S−1S ≤ mq − γq (28)

From (24) and constituent mass values for the light quarks,
we obtain the following results:

∆E2S−1S(tu) ≤ 0.243 , ∆E2S−1S(td) ≤ 0.224 ,
∆E2S−1S(ts) ≤ 0.257 (29)

with mu = md = 0.3 GeV; ms = 0.5 GeV.
The values in (29) have been derived using chiral per-

turbation theory, and such a method is not applicable for
heavier quarks. There is still the bound Λq ≥ 1

2 m
′(qiγ5q)

[22], and therefore Λq ≥ 0. With this less stringent bound
and using the aforementioned values, we have (in GeV):

∆E2S−1S(tc) ≤ 1.5 , ∆E2S−1S(tb) ≤ 5.0 (30)

assuming mc = 1.5 GeV, mb = 5.0 GeV. We notice that
the estimate of the HQET for the∆E2S−1S for the heavier
quarks is rather large due to a poor estimate on Λq, yet it
is consistent with the potential models.
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Table 3. Summary results of ∆E ranges from potential models
(PM), relativistic models (RPM) and heavy quark effective
theory estimates (HQET)

Summary of ∆E results (GeV)

quark PM RPM HQET
b 0.29–0.65 0.47–0.61 0.00–5.00
c 0.20–0.61 0.35–0.45 0.00–1.50
s 0.20–0.41 0.00–0.44 0.00–0.26
u, d 0.02–0.24 0.00–0.38 0.00–0.24

5 Discussion and conclusions

In Table 3, we present a summary of the results which
have to be compared to the width of the T–meson. If
∆E2S−1S ≥ Γtq, then there is an opportunity of formation
for the bound state. Since the quarks could decay in an in-
dependent manner from each other, one has Γtq = Γt+Γq.
We know however that Γq ≈ m5

q for a light quark, while
Γt ≈ m3

t , leading to Γt � Γq, thus Γtq is essentially given
by the top width.

The Tables 1, 2 and 3 have to be compared with the
width values of the top. Considering the average value
mt = 172.9 ± 7.0 GeV for the top mass, we have from (2)
(in GeV):

Γt = 1.17 (mt = 165.9) , Γt = 1.35 (mt = 172.9) ,
Γt = 1.55 (mt = 179.9) (31)

Figure 3 shows the window in energy ranges with respect
to the decay width of the T–meson, which is drawn in full
line. The dashed horizontal lines represent the indetermi-
nation due to the error on the top mass.

We see that the values for Γt are larger than the one
predicted from both the PM and the RPM. It must be
noticed that some of the values from the HQET, the one
for the heavier quarks (see Table 3), seem to allow for
T–meson formations, but it has to be stressed that the
estimates for the c and b quarks are rather poor, since at
the present time a more precise estimate on Λc,b is lacking.

From a combination of these calculational techniques
we may conclude that there is little evidence of possibility
of formation for bound states of t quark and lighter quarks.
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